Articles by: Merrill Cook

Dear Diffy, Find Me A Coworking Space

Disclaimer: this article is about a very mundane consumer search. With this said, the implications of how knowledge work and fact accumulation are often performed have wide-reaching implications for knowledge work flows.

The other day I was searching for coworking spaces.

As in many domains of knowledge, data coverage online was largely human curated. Lists with some undisclosed methodology provided the writer’s favorite coworking spots by city.

Sure, search engines will return a list plotted to a map in any major search engine. But I’m sure we’ve all run into the following.

  1. Load map…
  2. Pan slightly to surface more results…
  3. Zoom slightly to surface more results…
  4. Pan the opposite direction to try and find a result that had caught our eye…
  5. Try to recall the name that caught our eye in a new search…

Five steps to seek further data points on a single search result. Devoid of context, data provenance, and the ability to analyze at scale.

Sure, consumer search works in many, many cases. So do phone books.

If you’re a power user, a data hoarder, or a productivity buff, you can likely see the appeal of a search that actually returns comprehensive data. If you’re building an intelligent application or performing market intelligence, using search that won’t let you explore the underlying data is just a waste of time.

So after this predictable foray in which I ignored the advice of several articles, scrolled around a map, and got sidetracked once or twice, I decided to resort to a different sort of search: Diffbot’s Knowledge Graph.

Prerequisites

  • The title of our article may not make much sense if you haven’t been acquainted with Diffy, Diffbot’s web-reading bot
  • You see the promise of external web data for many applications… if it were structured (or at least felt disappointment at consumer search engines keeping you from public web data)

Opening the Knowledge Graph, it took all of 20 seconds to return data on over 4,000 coworking spaces. And sure, unless you’re selling a service to coworking space, you may wonder why anyone would need all this data as a personal consumer…

4000+ coworking space entities in ~20s

Maybe it’s simple curiosity. Maybe it’s the principle of it all; the fact that all of this information is publicly available online, but not in a structured format. Maybe this is just an analogy for non-consumer searches that also can’t be performed on major search engines. Any way you take it, search of the present is flawed for many uses, and it’s still our primary collective data source.

So what does search in the Knowledge Graph look like?

Well it starts with entities.

Knowledge graphs are built around entities (think people, places, or things) and relationships between entities. The types of relationships that can occur between entities, and the types of facts attached to entities are prescribed by a schema. One of the major “selling points” for knowledge graphs is that they have flexible schemas. That is — more so than other types of databases — they can adapt to what types of facts matter out in the world.

The Importance of Structured Web Data

At their core knowledge graphs (the category of graphs) can be built from any underlying data set. In the case of Diffbot’s Knowledge Graph, it’s the world’s largest structured feed of web data. Diffbot is one of only a handful of organizations to crawl the web. And using machine vision and natural language processing we’re able to pull out mentions of entities as well as infer facts and relationships.

Why is this important?

The web is largely made up of unstructured or semi-structured data. This means you can’t easily filter, sort, or manipulate this data at scale. While the internet is our largest collective source of knowledge, it’s not organized for modern knowledge work.

Diffbot’s products center around organizing the world’s information, whether through our AI-enabled web scrapers, our Knowledge Graph, or our Natural Language API. The ability to source the information from the web in a structured way provides the bedrock for machine learning initiatives, market intelligence, news monitoring, as well as the monitoring of large ecommerce datasets.

The State of Coworking Spaces As Told By AI

So what can you learn from a coworking space dataset that’s much more explorable than consumer search?

It turns out a lot.

While each individual data point is all available online, it’s not aggregated anywhere else in quite as explorable of a format.

In our case we can start with a simple facet query. Faceted search provides a summary view of the value of one fact type attached to a set of entities. So with this sort of query we can quickly discover what locations have the most coworking spaces.

By simply adding facet:locations.city.name we can turn over 4,000 unique results into an observation. While data found about these coworking spaces across the web would be in many different formats (and in many languages), knowledge graphs help to consolidate similar entities around standard fields.

An additional strength of knowledge graphs is that data points can be consolidated from many different sources with data provenance and then built off of. Using natural language processing and machine learning, fields can be computed or inferred from many underlying data sources. Our original query looked at organization entities with “coworking spaces” as part of their description. But an AI-generated field of “descriptors” allows for additional granularity. Let’s look at a facet view of the most common services offered by coworking spaces.

Depending on your experience with a range of coworking spaces, descriptors such as “expat,” “civil & social organization,” or “self improvement” may be novel. By amalgamating tens of thousands of online mentions, articles, and entries into this subset of org entities, the Knowledge Graph dramatically cuts down on time of fact accumulation.

One final area in which consumer search is severely lacking (or just in practice unpractical) is that of market research. Industry-specific events such as funding rounds, openings of new offices, key executive hires or leavings, or clues as to private organization revenue can be hard to pinpoint across the web. Softer signals like sentiment around topics or velocity of news coverage can also be informative.

Diffbot’s article index is roughly 50x the size of Google News. Unlike traditional content channels, you aren’t presented with content that’s gamed the system or paid to get your attention. Additionally, where consumer search engines are siloed by language or location, Diffbot’s article index is pan-lingual. With articles augmented by additional filterable fields underlying articles can become unique observations on sentiment, key happenings, and more. All underlying article data is returned as well, supporting the ability to mine in once you’ve found an interesting angle.

For a deeper dive into creating custom news feeds around organizations and events be sure to check out our Knowledge Graph news monitoring test drive.

Takeaways

Maybe you don’t buy the segue from what really is a consumer search (“coworking spaces near me”) and the copious coworking data available in the Knowledge Graph. But the fact of the matter is that a great deal of knowledge work still relies on human fact accumulation. Without automated ways to structure unstructured data, there’s a definite floor to the cost per fact.

Knowledge graphs provide a bedrock for knowledge workflows reengineered from the ground up. In particular:

  • Knowledge graphs mirror what we care about “in the world” (entities and relationships)
  • Knowledge graphs provide flexible schemas allowing for fact types attached to entities to change over time (as the world changes)
  • Automated knowledge graphs provide one of the only feasible ways to structure market intel and news monitoring data that can be spread across the web
  • Knowledge graphs that don’t expose their underlying data aren’t suitable for use in intelligent applications or machine learning use cases
  • Knowledge graphs that provide additionally computed fields (sentiment, tags, inferences on revenue or events) provide additional value for market intelligence and news monitoring

No News Is Good News – Monitoring Average Sentiment By News Network With Diffbot’s Knowledge Graph

Ever have the feeling that news used to be more objective? That news organizations — now media empires — have moved into the realm of entertainment? Or that a cluster of news “across the aisle” from your beliefs is completely outrageous?

Many have these feelings, and coverage is rampant on bias and even straight up “fake” facts in news reporting.

With this in mind, we wanted to see if these hunches are valid. Has news gotten more negative over time? Is it a portion of the political spectrum driving this change? Or is it simply that bad things happen in the world and later get reported on?

To jump into this inquiry we utilized Diffbot’s Knowledge Graph. Diffbot is one of the few North American organizations to crawl the entire web. We apply AI-enabled web scrapers to pages that are publicly available to extract entities — think people, places, or things — and facts — think job titles, topics, and funding rounds.

We started our inquiry with some external coverage on bias in journalism provided by AllSides Media Bias Ratings.

Continue reading

The Top 50 Most Underrated Startups as Told by AI

While Diffbot’s Knowledge Graph has historically offered revenue values for publicly-held companies, we recently computed an estimated revenue value for 99.7% of the 250M+ organizations in the KG.

What does this mean?

Most organizations are privately-held, and thus have no public revenue reporting requirement. Diffbot has utilized our unrivaled long-tail organization coverage to create a machine learning-enabled estimated revenue field. This field looks at the myriad fact types we’ve extracted and structured from the public web and infers a revenue from a range of signals.

Estimated revenue is just that… a machine learning-enabled estimate. But with a training set the size of our Knowledge Graph, we’ve found that a great majority of our revenue values are actually quite accurate.

How can I use estimated revenue?

Revenue — even if estimated — is a huge marker for determining size and valuation. In it’s absence it’s hard to effectively segment organizations. We see this field used in market intelligence, finance, and investing use cases. And it’s as simple as filtering organizations using the revenue.value field.

Where Does Diffbot Get It’s Data?

Diffbot is one of only a handful of organizations to crawl the entire web. We apply NLP and machine vision to crawled web pages to find entities and facts about them. These entities are consolidated in the world’s largest Knowledge Graph along with data provenance, linkages between entities, and additional computed fields (like sentiment, or estimated revenue). In this ranking we looked at organization entities. But organization entities are just the “tip of the iceberg” for Diffbot data, which comprises articles, products, people, events, and many other entity types.

Continue reading

The Top Coding Bootcamps For Founders According To The Knowledge Graph

Last week we took a look at the top universities for female founders. In our results, we noted that our web-reading AI associates tech bootcamp attendance with education, and a large cluster of founders attended specific universities in conjunction with bootcamps.

New to the Knowledge Graph? Diffbot’s Knowledge Graph is constructed by crawling a vast majority of the web and structuring data on pages using NLP and machine vision. The end result is one of the world’s largest databases of organizations, people, articles, products and more, all linked and with data provenance.

To return results from the Knowledge Graph, you submit queries which filter which entities to return. In this case we queried the Knowledge Graph to return individuals who:

  1. Attended an educational institution with the name of a top bootcamp
  2. Have held a job title including “CEO,” “chief executive officer,” or “founder”

We then returned a facet (summary) view of how many of these individuals attended each bootcamp.

Continue reading

The Best Schools For Female Founders According To The Knowledge Graph

Upon seeing Crunchbase’s annual ranking of the best schools for graduating entrepreneurs, we wanted to see how our Knowledge Graph results stack up.

The Diffbot Knowledge Graph is sourced from crawling a majority of the web and extracting entities and facts using NLP and machine vision.

Two prominent entity types are person and organization entities. When paired together powerful observations sourced from across the web are possible. In this exploration we returned all person entities within the Knowledge Graph who are currently founders and who are female. We filtered to make sure each organization had at least some publicly disclosed funding, and then we took a look at a summary view of which schools these founders had attended. You can check out the Knowledge Graph query here with a free trial.

While the top schools for female founders were consistent with Crunchbase’s coverage, you may wonder why the numbers vary so dramatically. Crunchbase’s ranking this year was looking at 2019-2020 graduates, and Crunchbase’s data is centered around tech and startup firmographics. While Diffbot’s Knowledge Graph certainly has firmographic details on tech-centered companies, our database of organizations is much wider ranging (over 250M+ orgs at last count). This means our list includes founders of all sorts of endeavors: non-profits, artistic organizations, medical organizations, and tech companies to name a few.

Continue reading

Monitoring Large Food Retailer Investments With The Knowledge Graph

A few weeks ago we published a view into Big Tech investments by industry. In this post we’ll take a similar look at the largest food retailers.

Panning out a bit, there are over 250M organizations within the Knowledge Graph. To obtain this list of large food retailers we first narrowed our search to food retailers with more than 1,000 employees. This query surfaces more than 7,000 fact-rich entities.

From there we simply sorted the results by number of employees to gain the largest food retailers including Walmart, Target, Tesco, Kroger, Carrefour, and Safeway.

With this list in mind, we looked for a list of organizations who had been invested in by one of these organizations. Bounded by calendar years, we then returned a summary view that looked at which industries the invested-in companies represented. If you have a subscription or free trial feel free to check out the resulting query.
Continue reading

Startup Revenue By County With Diffbot’s Knowledge Graph

What can you do with billions of web-sourced facts on hundreds of millions of organizations? Beyond analyzing the facts themselves, you (or a machine of your choice) can learn a lot. Historically, our Knowledge Graph has had one of the largest collections of publicly-disclosed organization revenue. Recently, we’ve applied machine learning processes across many org fields to estimate revenue for private organizations as well.

Continue reading

Using the Knowledge Graph to Segment Big Tech Investments By Industry

Every big tech investment is big news. If your firm raises a funding round with prestigious investors or is acquired, you better bet you’ll spread the news far and wide.

But where can you go for this information en masse? Even covering a handful of big investors over a handful of years can lead to a list of thousands of invested in firms. And a list of firms themselves isn’t that useful. Sure, some big names pop out. But how do you see what “plays” big tech is making?

That’s where our web-reading bots come in. By working through billions of web pages using NLP and machine vision, Diffbot’s Knowledge Graph is the largest public-web sourced database of organizations, articles, people, products, and events. For each entity — organization, articles, people, etc. — facts are vetted and accumulated to create a filterable, searchable database of “things.” So when we wanted to check out which industries big tech has invested in over the last decade, we knew right where to turn. No analyst middlepersons, just public web data structured into a market intel-rich format.

Big Tech Investment By Industry 2010-2021

Distribution of industries of organizations invested in by Facebook, Alphabet, Amazon, Microsoft, Apple, and Netflix from 2010 to July 2021. Firmographic data sourced from Diffbot’s Knowledge Graph.
Continue reading

Generating B2B Sales Leads With Diffbot’s Knowledge Graph

Generation of leads is the single largest challenge for up to 85% of B2B marketers.

Simultaneously, marketing and sales dashboards are filled with ever more data. There are more ways to get in front of a potential lead than ever before. And nearly every org of interest has a digital footprint.

So what’s the deal? 🤔

Firmographic, demographic, technographic (components of quality market segmentation) data are spread across the web. And even once they’re pulled into our workflows they’re often siloed, still only semi-structured, or otherwise disconnected. Data brokers provide data that gets stale more quickly than quality curated web sources.

But the fact persists, all the lead generation data you typically need is spread across the public web.

You just needs someone (or something 🤖) to find, read, and structure this data.

Continue reading

Towards A Public Web Infused Dashboard For Market Intel, News Monitoring, and Lead Gen [Whitepaper]

It took Google knowledge panels one month and twenty days to update following the inception of a new CEO at Citi, a F100 company. In Diffbot’s Knowledge Graph, a new fact was logged within the week, with zero human intervention and sourced from the public web.

The CEO change at Citi was announced in September 2020, highlighting the reliance on manual updates to underlying Wiki entities.

In many studies data teams report spending 25-30% of their time cleaning, labelling, and gathering data sets [1]. While the number 80% is at times bandied about, an exact percentage will depend on the team and is to some degree moot. What we know for sure is that data teams and knowledge workers generally spend a noteworthy amount of their time procuring data points that are available on the public web.

The issues at play here are that the public web is our largest — and overall — most reliable source of many types of valuable information. This includes information on organizations, employees, news mentions, sentiment, products, and other “things.”

Simultaneously, large swaths of the web aren’t structured for business and analytical purposes. Of the few organizations that crawl and structure the web, most resulting products aren’t meant for anything more than casual consumption, and rely heavily on human input. Sure, there are millions of knowledge panel results. But without the full extent of underlying data (or skirting TOS), they just aren’t meant to be part of a data pipeline [2].

With that said, there’s still a world of valuable data on the public web.

At Diffbot we’ve harnessed this public web data using web crawling, machine vision, and natural language understanding to build the world’s largest commercially-available Knowledge Graph. For more custom needs, we harness our automatic extraction APIs pointed at specific domains, or our natural language processing API in tandem with the KG.

In this paper we’re going to share how organizations of all sizes are utilizing our structured public web data from a selection of sites of interest, entire web crawls, or in tandem with additional natural language processing to build impactful and insightful dashboards par excellence.

Note: you can replace “dashboard” here with any decision-enabling or trend-surfacing software. For many this takes place in a dashboard. But that’s really just a visual representation of what can occur in a spreadsheet, or a Python notebook, or even a printed report.

Continue reading